QEV ISOLATION

Rapid & precise nanoparticle isolation

RAPID, HIGH-PRECISION NANOPARTICLE ISOLATION

FROM 150 µL TO 2000 L AND BEYOND

- Rapid, simple & reliable isolation: qEV columns elute intact extracellular vesicles (EVs) within 15 minutes and require minimal intervention.
- Standardisable & reproducible: Pair qEV columns with the Automatic Fraction Collector or other qEV instrumentation to further enhance the throughput and reproducibility of sample purification.
- Pure, intact & functional EV collection: qEV columns harness size exclusion chromatography to enable the isolation of highly purified and intact EVs.
- Scale up with qEV PurePath: Get scale-up support through our tailored isolation solutions.
- A versatile approach to isolation: qEV columns are available in a standard, "off-the-shelf" size range, and are made on request alongside large-scale process development.

THE qEV ISOLATION PLATFORM IS USED BY:

- EV-based diagnostics companies
- Developers of EV-based therapeutics and cosmetics
- Academic and industry researchers working with EVs, viruses, liposomes, other lipid nanoparticles and more

GMP-READY ON REQUEST:

Each batch of GMP-ready qEV columns is subject to bioburden and endotoxin testing, with the results compared against defined criteria for batch release.

Download the Regulatory Support File at www.izon.com/qEV-RSF

CHOOSE YOUR QEV SERIES

The qEV column range spans a variety of sizes, all of which are available in three types:

20 nm series

Miximise particle recovery

Isolation capabilities are relevant to the study of:

- Exomeres & supermeres
- Small EVs
- Small viruses, including adenoviruses
- EV-only biomarkers

35 nm series

The middle ground

 Popular in the study of EVs, especially cell culturederived EVs

70 nm series

Maximise EV isolate purity

Popular in the study of:

- EV-omics
- Plasma EV biomarkers
- Functional studies: establishing EV-based effects and separating them from that of protein/lipoprotein

The name of each qEV series derives from the pore size of the resin used for that particular column range. The resulting purified isolates have slightly different characteristics.

	20 nm series	35 nm series	70 nm series
Purity of isolate	✓	√ √	\ \ \ \
Lipoprotein removal (ApoB and ApoA1)	✓	✓	√ √
Particle recovery	√ √	✓	✓
Suited to the recovery of sub 50 nm particles?	√ √	✓	Х
Optimum isolation size range	20 nm - 100 nm	35 nm – 400 nm	70 nm – 2000 nm
Size range where >50% of input is isolated	20 nm - ~4000 nm	25 nm - 2000 nm	70 nm – 2000 nm

www.izon.com

CHOOSE YOUR COLUMN SIZE

qEVsingle	qEVoriginal	qEV1
150 μL	500 μL	1 mL
Sample loading volume (recommended for highest purity)	Sample loading volume (recommended for highest purity)	Sample loading volume (recommended for highest purity)
DIDEAL FOR SMALL BIOLOGICAL SAMPLES	● IDEAL FOR HIGH- THROUGHPUT STUDIES	DIDEAL FOR HIGH- THROUGHPUT STUDIES AND EV- RNA PREPARATION
Optimised for small samples	The most popular qEV column	A more recent addition, made following popular request
DESIGNED FOR SINGLE USE	• REUSABLE	• REUSABLE
No RNA carryover	Up to 5 times	Up to 5 times

qEV2

2 mL

Sample loading volume (recommended for highest purity)

■ IDEAL FOR SAMPLES USED IN CLINICAL AND FUNDAMENTAL RESEARCH

Includes Leur Lock fitting

▶ REUSABLE

Up to 5 times

qEV10

Up to 10 mL

Sample loading volume (recommended for highest purity)

■ IDEAL FOR LARGE VOLUME CELL CULTURE SUPERNATANT

Includes Leur Lock fitting

▶ REUSABLE

Up to 5 times

qEV100

Up to 100 mL

Sample loading volume (recommended for highest purity)

IDEAL FOR INDUSTRIAL VOLUMES OF CELL CULTURE SUPERNATANT

Includes Leur Lock fitting

REUSABLE

Up to 5 times

www.izon.com

Rev C

TO STREAMLINE YOUR ISOLATION WORKFLOW, VISIT:

www.izon.com/qev

